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Abstract  

Compared to gun launch ammunition, uncontrolled direct fire atmospheric 
rockets are terribly inaccurate, to the point where they are used most effectively 
on the battlefield as area weapons. Dispersion characteristics can be dramatically 
improved by outfitting the rocket with a suitable control mechanism and sensor 
suite. In the work reported here, a lateral pulse jet control mechanism is 
considered. The lateral pulse jet mechanism consists of a finite number of small 
thrusters spaced equally around the circumference of the rocket. Using a 
simulation model that includes projectile, flight control system, and inertial 
measurement unit dynamics, three different control laws are contrasted, namely, 
proportional navigation guidance, parabolic and proportional navigation 
guidance, and trajectory tracking control laws. When the number of individual 
pulse jets is small, a trajectory tracking control law provides superior dispersion 
reduction. However, as the number of pulse jets is increased, the relative 
performance of the parabolic and proportional navigation guidance control law 
is slightly better than the trajectory tracking control law. When the number of 
pulse jets is small, the proportional navigation guidance, as well as the parabolic 
and proportional navigation guidance control laws, exhibits large mean miss 
distance. All control laws appear to be equally susceptible to accelerometer and 
gyroscope errors that corrupt inertial measurement unit rocket state feedback. 
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1.   Introduction 

Direct fire atmospheric rockets are commonly used munitions on the battlefield 
and are launched from both land and air delivery platforms. The popularity of 
these weapons stems from the low system weight and relatively low unit cost. 
Compared to gun-launched projectiles, uncontrolled direct fire rockets are very 
inaccurate and are viewed as area weapons on the battlefield. Poor accuracy 
characteristics of direct fire rockets stems from the fact that the rocket enters the 
atmosphere with low speed. Any atmospheric or motion disturbances 
experienced by the rocket at launch map into comparatively large aerodynamic 
angles of attack causing aerodynamic jump that leads to high impact point 
dispersion. 

In order to improve impact point accuracy performance, weapon system 
developers are now considering the use of active flight control. A possible 
control mechanism to suit this purpose is a lateral pulse jet control mechanism. 
The lateral pulse jet mechanism consists of a ring of small thrusters mounted 
near the nose of the rocket. Each thruster on the ring imparts a single, short 
duration, large lateral force to the rocket. Design of a lateral pulse jet flight 
control system simplifies determining the firing time for each thruster. The 
lateral pulse jet control mechanism falls into the category of an impulse control 
mechanism. This is in contrast to the vast majority of flight control mechanisms, 
such as deflecting fins that continuously generate a control force to track a 
specific trajectory. While highly developed techniques such as proportional 
navigation guidance (PNG) are well known in missile guidance where 
continuous control is available, few have focused attention on the use of impulse 
control mechanisms, particularly for direct fire rockets. Harkins and Brown [1] 
developed a simple control scheme to reduce dispersion of a direct fire rocket 
which only required angular rate feedback. For the example configuration 
considered, impact point dispersion was reduced by a factor of 4. Jitpraphai and 
Costello [2] studied the same problem using a trajectory tracking flight control 
law which required an inertial measurement unit (IMU). Rocket dispersion was 
reduced by as much.as a factor of 100, depending on the lateral pulse jet 
configuration. Calise and El-Shirbiny [3] developed a lateral pulse jet control law 
for a spin-stabilized gun-launched projectile based on proportional navigation 
guidance, but modified to account for trajectory bending due to gravity. 

The work reported here uses dynamic simulation to compare the merits of 
different flight control laws specifically applied to a direct fire atmospheric 
rocket equipped with a lateral pulse jet control mechanism. Candidate flight 
control laws include: PNG, parabolic and proportional navigation guidance 
(PAPNG), and trajectory tracking (TT). Parametric studies considering the effect 



of the number of individual pulse jets, the impulse of each thruster, and sensor 
errors on dispersion, and mean miss distance are reported. 

2.   Simulation Model 

The system under consideration is an atmospheric rocket equipped with a flight 
control system. The control mechanism system is a ring of lateral pulse jets, an 
IMU, and associated electronics. The coupled dynamics of the rocket, IMU, and 
flight control law are included in the simulation model deployed in this study. A 
schematic of the overall system is shown in Figure 1. 

As is typical in flight dynamic modeling of projectiles, the rocket is modeled as a 
rigid body described by six degrees of freedom (6-DOF). The 6-DOF are the 
three position components of the mass center and the three Euler orientation 
angles. Forces and moments acting on the body include weight, air loads, main 
rocket motor thrust, and lateral pulse jet thrust. Details on the dynamic model of 
the rocket are available elsewhere and are omitted here for brevity [2, 4]. Sensor 
feedback used by the flight control law is obtained with a conventional IMU. 
The IMU contains three translational accelerometers and three rate gyroscopes 
that provide the acceleration of the IMU location and the angular velocity of the 
rocket with respect to the ground expressed in the rocket reference frame. The 
IMU estimates the position, orientation, and velocity of the rocket by numerically 
integrating kinematic and dynamic equations. Merhav [5] provides details on 
conventional IMU dynamic equations. Accuracy of the IMU is largely dependent 
on two factors, namely, accuracy of the initial position, orientation, and velocity 
used by the IMU as it begins to integrate the dynamics equations and errors in 
the accelerometers and gyroscopes. In order to model the effect of sensor errors 
in the dynamics of the IMU, filtered Gaussian random noise and bias is added to 
each of the sensors. 

Simulation of the controlled rocket system entails numerically integrating 21 
nonlinear ordinary differential equations, 12 equations for the rocket, and 9 
equations for the IMU. These equations are integrated forward in time using an 
adaptive time step Runge-Kurta method [6]. 

2.1    Flight Control Laws 

Three different control laws are considered for a direct fire atmospheric rocket 
with a lateral pulse jet control mechanism. The control laws consist of control 
logic to generate an appropriate error signal and control logic to fire the lateral 
pulse jets. The lateral pulse jet firing logic is the same for all three flight control 
laws and is described at the end of this section. 



2.1.1 PNG 

Developed during World War II, PNG is a well-known guidance technique for 
tactical and strategic missiles and will act as a benchmark control law. PNG 
issues command accelerations calculated during flight that are proportional to 

the line-of-sight (LOS) angular rate, A, and the rocket closing velocity, Vc. 

Mathematically, the guidance law can be stated as shown in equation (1): 

Ac ■ NVCA (1) 

In equation (1), N is the proportional navigation constant that is typically set 
between 3 and 5 [7]. 

The horizontal plane PNG control law is derived by considering Figure 2. Point 
P represents a moving projectile that is fired from a launcher towards a target at 

point T. The LOS frame (IL, JL, KL) is defined with its origin at point P. The IL 

unit vector lies on the horizontal plane projection of the line between the 

projectile and the target. The JL unit vector lies on the horizontal plane and the 

KL points down. The relationship between the inertial reference frame and the 

LOS frame is given by a rotation matrix defined by equation (2): 

(2) 
h 0 h h 
J, ■ = 

cx 0 
YL \ = [Tu]\ JL 

K, 0 0 1 KL KL 

where AH and AH are determined by equations (3) and (4): 

/ 
AH =tan yT-y 

\ 

\XT      X J 

and 

A, 
= -y(xT-x) + x(yT-y)    . 

(xT-x)2+(yT-y)2 

(3) 

(4) 

Equation (4) has been simplified with the assumption that the target is stationary. 
The horizontal acceleration command is given by equation (5): 

^YC ~ ^H^HUH 

uH=v+s*Hy 

(5) 

(6) 



Figure 3 shows the flight control system block diagram of the horizontal 
guidance law. 

The vertical plane PNG control law can be derived in the same manner. The final 
vertical plane guidance commands are given by equations (7)-(10): 

\XT      XJ 

K 

Xy =tan" 

_ -z(xT - x) + x(zT - z) 

(xT -x)2 +(zT -zf 

AZC   = NyXyUy 

UV=C^X + SAVZ 

(7) 

(8) 

(9) 

(10) 

Equation (8) has been simplified with the assumption that the target is stationary. 
The vertical acceleration command magnitude is given by equation (9). 

The total acceleration command in the LOS frame is given by equation (11): 

Ac = AycJL + AZCKL - AXCIB + AYCJB + AZCKB  • \   ) 

The command acceleration components are transformed to the projectile body 
frame by first transforming the command acceleration components from the LOS 
frame to the inertial frame and then to the body frame. Equation (12) provides 
the transfer formula: 

*xc 

XYC 

^ZC J 

= [T1B][TLr] 

0 

^YC 

XZC 

(12) 

Note that the tilde symbol (~) indicates that a quantity is described in the LOS 
reference frame. In equation (12), TIB is the inertial to body reference frame 

transformation: 

T - 

cecv ces<y 

s4ce 

CjCa 

(13) 

The magnitude of the off-axis command acceleration is used as the error signal 
that is input to the lateral pulse jet firing logic. Equation (15) provides the error 
signal phase angle: 

T = fA ,   2 + A   2 l
YC    ^-"-ZC (14) 



y = tan-1 ,Azc/A    I  • (15) 

2.1.2 PAPNG 

The PAPNG control law uses the same horizontal plane acceleration command 

as PNG. Thus, AYC is given by equation (5). In the vertical plane, a parabolic 

guidance law is employed to determine command acceleration in the vertical 
LOS plane to compensate for trajectory bending due to rocket weight. A desired 
parabolic trajectory is continuously updated during flight. Figure 4 shows the 
desired parabolic trajectory described by equation (16) [3]. 

zp=zT + K^xp + K2xp
2 ' (16) 

where xp and zp are components of the projectile position in the target reference 

frame, and xr and zT are components of the target position in the target 

reference frame. The target reference frame unit vectors, IT, JT and KT are 

shown in Figure 4. The KT axis points toward the target point. The vectors IT 

and KT are parallel but in opposite directions to IL and KL. The parameters Kx 

and K2 are constants determined such that a parabolic trajectory that emanates 
from the projectile passes through the target and has a specific trajectory angle, 
ßF, at the target point. 

^=tan(^)- (17) 

-(K^(xT -x)2+(yT -yf +zT -zP) _ 

(xr-x)2+(vr-v)2 K2 = K~iyKT \:^ '\; T pj■        as) 

The command acceleration component in the vertical LOS plane is determined 
by equation (19): 

,    J_MMZR   . (19) *zc 

Figure 5 shows the diagram of the vertical guidance law. In equation (19), VL is 
the magnitude of projectile velocity in the LOS frame, ß is the flight path angle 
of the projectile in the LOS frame, and r is the acceleration command time 
constant. ßD is the desired flight path angle of the projectile, which is computed 
using the parabolic trajectory as shown in Figure 5. The acceleration command 
in the LOS frame is given in equation (20). It is transformed to the body 
reference frame using sequences of rotations shown in equation (22). 



Ac —~AzcSßIL +AyCJL    AzcCpKL 

Ac — Axcl B + AYCJ B + AZCKB 

A xc 
LYC 

LZC 

= [TB][TU]- 

sß-^-zc 

— Cß-™-ZC 

(20) 

(21) 

(22) 

Using equation (22), the error magnitude and phase of the off-axis command 
acceleration is computed using equations (14) and (15). 

2.1.3 TT 

A predetermined command trajectory is assumed to be known prior the launch 
of the rocket. This command trajectory is a desired path of the rocket from the 
launcher to the target. For direct fire rockets, a command ballistic trajectory is 
available from the fire control system and can be downloaded to the rocket just 
prior to launch. A schematic of the flight control system block diagram is shown 
in Figure 6. 

The TT flight control system first compares the measured position of the 
projectile (x,y,z) to the commanded trajectory (xc,yc,zc) to form a position 

error vector in the inertial frame. The trajectory error is converted to the rocket 
body frame using equation (23): 

(23) 

The magnitude and phase angle of the error in the off-axis plane of the rocket are 
denoted T and y, and are defined by equations (24) and (25), respectively. The 

error magnitude is used in the firing decision and the error phase angle is used in 
the selection of pulse jet to be fired: 

V* xc    X 

'  eY HT*\\ yc-y* 
?2. ,zc~z. 

r-J. eY + ez 

y = tan-l(ez/eY) 

(24) 

(25) 

2.2   Lateral Pulse Jet Firing Logic 

A schematic diagram of the lateral pulse jet firing logic is given in Figure 7. The 
same logic is used for all the control laws previously described. At each 
computation cycle in the flight control system, a sequence of checks are 



conducted that govern firing of individual lateral pulse jets. The conditions that 
must be satisfied for an individual lateral pulse jet to fire are as follows: 

•    The error magnitude must be greater than a specified tolerance, namely 

eTHRES ' 

T > eTHREs ■ (26) 

• The time elapsed since the last lateral pulse jet firing must be greater than a 
specified duration, AtTHRES. This condition implies a specified delay time 

between two consecutive firings, 

t-t*>AtmRES> (27) 

where t  is the time of the most recent pulse jet firing. 

• The difference between the error phase angle and the individual pulse jet 

force must be less than a specified angle, 8mRES: 

A, 
hi-n-y-r- 

X
PJ < °THRES    • (28) 

•    The individual pulse jet under consideration has not been fired. 

The first two checks are valid for all lateral pulse jets while the last two checks 
are specific to a given lateral pulse jet. 

3.   Results 

The rocket configuration used in the simulation study is a representative direct 
fire rocket that is a 1.4-m-long, fin-stabilized rocket with three pop-out fins on 
the rear of the projectile. The lateral pulse jet ring is located 1.2 m from the base 
of the rocket. The main rocket motor burns for 1.1 s and imparts an impulse to 
the rocket of 6200 N-s. During the main rocket motor burn, the forward velocity 
of the rocket is increased from 44 m/s to 770 m/s. The rocket weight, mass 
center location from the base of the rocket, roll inertia, and pitch inertia before 
and after burn is 10.4/7.2 kg, 0.85/0.86 m, 0.0077 kg/0.0058 m2, and 1.83 kg/ 
1.61 m2, respectively. Nominally, the rocket exits the launcher with the following 
initial conditions: x = 0.0 m, y = 0.0 m, z =-30.5 m, <j> = 0.0°, 9 = 4.14°, y/ = 0.0°, 

u = 43.7 m/s, v = 0.0 m/s, w = 0.11 m/s, p = 51.5 rad/s, q = -0.18 rad/s, and 

r = 0.0 rad/s. 

Using the control laws previously described, uncontrolled and controlled 
trajectories are compared for the example rocket configuration against a nominal 
command trajectory.  The rocket is launched at an altitude of 30.5 m toward a 



target on the ground with altitude and cross range equal zero at a range of 
3000 m. The ring contains 32 individual lateral pulse jets where each individual 
pulse jet imparts an impulse of 5 N-s on the projectile body over a time duration 
of 0.01 s. The pulse jet elapsed time threshold is set to 0.2 s. The pulse jet angle 
threshold is set to 0.2°. For the controlled rocket with TT flight control system 
the window size is 1.5 m. The controlled rocket with PNG or PAPNG flight 
control system has a window size setting of 6 m/s2. These window sizes were 
optimized through parametric studies in which dispersion was minimized. 

Figures 8 and 9 compare the trajectory response obtained using the different 
guidance schemes. These two figures show a desired controlled trajectory, an 
uncontrolled trajectory, a PNG controlled trajectory, a PAPNG controlled 
trajectory, and a TT controlled trajectory. Without the use of pulse jet control, the 
rocket falls short of the target with a miss distance of 52.5 m. The PAPNG and 
TT control laws significantly reduce miss distance from 52.5 m in the 
uncontrolled case to 1.6 and 0.7 m in the controlled case, respectively. Note that 
the PNG control law actually increases miss distance relative to the uncontrolled 
case. This is due to the fact that the PNG control law initially commands a 
downward vehicle acceleration when in fact an upward command acceleration is 
required to reduce miss distance. Toward the end of the trajectory, the lateral 
pulse jets do not process sufficient control power to maneuver to the target. 

If several projectiles are fired from the same weapon with the same firing setting, 
their points of impact will be different due to system uncertainty. For direct fire 
rockets, impact points are defined as the altitude and cross range of the projectile 
at a specified down range distance. The mean impact point of a group of fired 
rockets with respect to the target center is a measure of the accuracy of the 
weapon. The degree of scatter of the impact points about the mean impact point 
defines dispersion. Both accuracy and dispersion determine whether a particular 
weapon can hit an intended target. 

Scatter in projectile impact points is caused by a myriad of weapon system 
inaccuracies including launcher manufacturing tolerances, launcher vibration, 
propellant ignition variation, temperature variations of the launcher or projectile, 
atmospheric turbulence and gusts, atmospheric pressure variation, etc. For 
weapon system variations connected with the launch dynamics, the end result is 
a variation in the initial launch conditions for each projectile fired. Notable 
launch conditions that create significant impact point scatter are the initial 
angular velocity of the projectile. To simulate launch conditions that cause 
dispersion, the initial pitch and yaw rate are modeled as independent Gaussian 
random variables with a mean and standard deviation of -0.18/0.3 and 
0/0.3 rad/s, respectively. The dispersion radius is defined as the radius of a 
circle that emanates from the mean impact point and contains 67% of the impact 
points. 



Figures 10-15 compare the dispersion radius and mean impact point at a range 
of 3000 m for PNG, PAPNG, and TT control laws using different combinations of 
pulse jets. The dispersion radius and mean impact point statistics are computed 
with a sample size of 200. 

Figures 10 and 11 consider 1 N-s pulses, while Figures 12 and 13 consider 5 N-s 
pulses, and Figures 14 and 15 consider 10 N-s pulses. In all cases, dispersion 
radius is steadily reduced as the number of pulses is increased. For a relatively 
small number of pulses, the TT control law provides the lowest dispersion. 
However, as the number of pulses is increased, the PAPNG control law improves 
relative to the TT control law and obtains slightly lowest dispersion for a large 
number of pulse jets. For the PNG and PAPNG control laws, the mean miss 
distance initially increases as the number of pulse jets is increased and then is 
reduced as the number of pulse jets continues to increase. For a small number of 
pulse jets, the mean miss distance is greater that the uncontrolled case. During 
the thrusting phase of flight, the PNG and PAPNG control laws tend to over 
compensate by pulsing too often and are unable to close on the target. The TT 
control law steadily reduces the mean miss distance as the number of pulse jets is 
increased. 

Figures 16 and 17 examine the sensitivity of the different pulse jet control laws to 
accelerometer bias errors for the case of 24 individual pulse jets, each with an 
impulse of 10 Ns. The bias errors for each accelerometer in the IMU are 
independent Gaussian random variables with zero mean. A sample size of 200 is 
used to compute the statistics shown in these figures. As the standard deviation 
of accelerometer bias is increased, dispersion is steadily increased for all control 
laws. The slope of dispersion radius vs. standard deviation of accelerometer bias 
error is slightly larger for the TT control law, indicating a larger sensitivity to 
accelerometer bias errors. The mean miss distance increases as the standard 
deviation of accelerometer bias error increases for the PNG control law and is flat 
for the PNG and TT control laws. Figures 18 and 19 are similar to Figures 16 and 
17 except gyroscope bias errors in the IMU are evaluated. The slope of 
dispersion radius vs. gyroscope bias error is lowest for the TT control low 
indicating the TT control law is comparatively less sensitive to gyroscope bias 
error. The mean miss distance steadily increases as a function of gyroscope bias 
error for all control laws. 

4.   Conclusions 

With proper selection of flight control system parameters and adequately sized 
lateral pulse jets, dispersion and accuracy characteristics of a direct fire rocket 
equipped with a ring of lateral pulse jets can be drastically improved with a 



proportional navigation guidance, proportional and parabolic navigation 
guidance, or trajectory tracking control law. The proportional navigation 
guidance control law provided the least dispersion reduction and also generates 
the largest mean miss distance. This is mainly from target patterns below the 
target due to gravity effects not accounted for the control law. The proportional 
and parabolic guidance control law obtained low dispersion and mean miss 
distance performance when the number of pulse jets is large. The proportional 
and parabolic guidance control law is comparatively more sensitive to gyroscope 
bias errors than accelerometer bias errors. The TT control law generated low 
dispersion and miss distance characteristics, particularly when the number of 
pulse jets is relatively small. While the proportional navigation guidance control 
law and the proportional and parabolic navigation guidance control law 
generated impact patterns off target when the number of pulse jets was low, the 
TT control law consistently generated impact patterns nearly centered on the 
target. This is due to the fact that the TT control law forms an error signal from 
position, whereas the other two control laws use acceleration as the basis for an 
error signal. 
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Figure 3. PNG control law in the horizontal plane. 
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Figure 4. Parabolic trajectory in the LOS reference frame. 
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Figure 10. Comparison of dispersion radius for pulse jet impulse = 1 N-s. 
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Figure 11. Comparison of mean miss distance for pulse jet impulse = 1 N-s. 
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Figure 12. Comparison of dispersion radius for pulse jet impulse = 5 N-s. 
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Figure 13. Comparison of mean miss distance for pulse jet impulse = 5 N-s. 
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Figure 16. Effect of accelerometer bias on dispersion radius. 
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Figure 17. Effect of accelerometer bias on mean miss distance. 
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Figure 18. Effect of gyroscope bias on dispersion radius. 
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Figure 19. Effect of gyroscope bias on mean miss distance. 
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